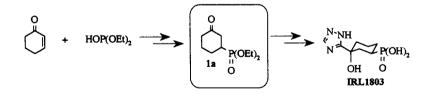


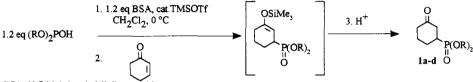
PII: S0040-4039(97)00698-9


Trimethylsilyl Triflate Promoted 1,4-Addition of Silyl Phosphites to Cyclic Enones

Ichiro Mori*, Yoko Kimura, Toshihito Nakano, Shin-ichiro Matsunaga, Genji Iwasaki, Atsuko Ogawa, Kenji Hayakawa

> Chemistry Department, International Research Laboratories, Ciba-Geigy Japan Ltd, P.O.Box 1, Takarazuka 665, Japan

Abstract: A catalytic amount of trimethylsilyl triflate (TMSOTf) remarkably facilitates the selective conjugate addition of a variety of silyl phosphites, prepared in situ from dialkyl phosphites and N,O-bis(trimethylsilyl)acetamide, to cyclic enones giving 1,4-adducts in high yields. © 1997 Elsevier Science Ltd.


Functionalized phosphonates are important intermediates for the synthesis of many biologically active compounds.¹ During our ongoing program for the rational design of herbicides, we became interested in preparing derivatives of cyclic β -ketophosphonate 1a which was used as a synthetic intermediate for the potent IGPD inhibitor **IRL1803** (Ki = 10 nM).²

Although the conjugate addition of silvl phosphites to acyclic α,β -unsaturated ketones and esters proceeds smoothly at room temperature, forcing conditions are required for cyclic enones.³ For example, the addition of diethyl trimethylsilvl phosphite to 2-cyclohexen-1-one occurs only at high temperature with prolonged reaction time (180 °C /12 h in sealed tube), affording 1,4-adduct 1a with the concomitant formation of a 1,2-adduct.⁴ In addition, dimethyl trimethylsilvl phosphite does not react with the enone under the same conditions.

Herein we wish to report a facile method for the preparation of cyclic β -ketophosphonates via silyl phosphites under very mild conditions. The addition of diethyl trimethylsilyl phosphite, prepared in situ from

diethyl phosphite and N,O-bis(trimethylsilyl)acetamide,⁵ to 2-cyclohexen-1-one was very sluggish at room temperature, giving only 10% yield of 1a even after 30 h. However, it was found that an addition of 5 mol% of trimethylsilyl triflate remarkably facilitated the reaction to afford 95% yield of 1a in 1 h at 0 °C. Moreover, the reaction proceeded in a highly regioselective manner to give almost exclusively 1,4-adduct 1a, and only a trace amount of a 1,2-adduct was detected by ¹H-NMR. With this procedure, other dialkyl phosphonates (R = Me, Bn, Ph) were obtained in 75-83% yields, as shown in Table 1. Other Lewis acids, (i.e. CF₃SO₃H, TiCl₄, BF₃•OEt₂), were less effective and the adduct 1a was obtained in much lower yields (52%,19%, and 1%, respectively).

BSA: N,O-bis(trimethylsilyl)acetamide

Table 1. A	ddition of Silylated	Dialkyl Phosphites	to 2-Cyclohexen-1-one	Promoted by TMSOTf ^a
------------	----------------------	--------------------	-----------------------	---------------------------------

Entry	(RO) ₂ POH	Eq. of TMSOTf	Time (h)	Product	% Yield °
1	$\mathbf{R} = \mathbf{E}\mathbf{t}$	none 30 ^b 1a		10	
2	$\mathbf{R} = \mathbf{E}\mathbf{t}$	0.01 1		1a	70
3	$\mathbf{R} = \mathbf{E}\mathbf{t}$	0.05	1	1a	95
4	R = Me	0.05	1	1b	83
5	$R = PhCH_2$	0.05	1	1c	86
6	$\mathbf{R} = \mathbf{P}\mathbf{h}$	0.05	7.5 ^b	1d	75

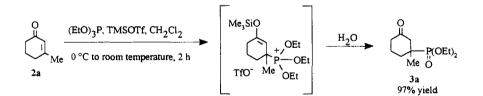
^aAll reactions were carried out in dichloromethane at 0 °C unless otherwise stated. ^b At room temperature. ^cIsolated yield. Only 1,4-adducts were obtained.

This method was applied to the reactions with a variety of cyclic enones, and in most cases selective 1,4additions occurred (>98%) except for 2a and 2j, as shown in Table 2. Although the presence of a heteroatom at the γ -position of enones does not affect the regioselectivity, β , β -disubstituted enone 2a predominantly afforded a 1,2-adduct (68% yield, with 20% yield of 3a) presumably due to the hindrance around the β -carbon⁶. It is also worthwhile to note that enone 2i gave only the trans 1,4-adduct 3i in 81% yield.

In summary, we have developed a facile method for the preparation of cyclic β -ketophosphonates under very mild conditions. The formation of trimethylsilyl phosphites in situ is also advantageous for the rapid preparation of a variety of dialkyl β -ketophosphonates. Application of this method to inhibitor synthesis will be reported in due course.

Entry	Enone	(RO) ₂ POH	Time (h)	Product	% yield ^b
1	O L L Me 2a	R = Et	1	$ \begin{array}{c} 0 \\ $	20 (68) ^d
2	о 2b	R = Et	overnight °	$ \begin{array}{c} 0 \\ 0 \\ \hline PO(OEt)_2 \\ 3b \end{array} $	70
3					
	$2\mathbf{c}: \mathbf{R} = \mathbf{H}$	R = Et	0.5	3c: R = H	82
4	2d: R = Me	$\mathbf{R} = \mathbf{E}\mathbf{t}$	2	3d: R = Me	40
5	$2e: R = CO_2Et$	$\mathbf{R} = \mathbf{E}\mathbf{t}$	1.5	$3e: R = CO_2Et$	88
6	C S				
	2f	$\mathbf{R} = i - \mathbf{P} \mathbf{r}$	1	3f: R = i - Pr	72
7	2g	$\mathbf{R} = \mathbf{PhCH}_2$	1	$3g: R = PhCH_2$	58
8		R = Et	0.5	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ } \begin{array}{c} \end{array} \\	98
9	Me O 2i	R = Et	0.3	$Me \xrightarrow{O} PO(OEt)_2$	81
10	2j	R = Et	1	PO(OEt) ₂	82 (10) ^d

Table 2. Addition of Dialkyl Phosphites to Cyclic Enones^a.


^aAll reactions were carried out in dichloromethane at 0 °C. ^b Isolated yield. ^c At room temperature. ^d Yield of isolated 1,2-adducts in a parenthesis

Typical Procedure: Preparation of 3-(Diethylphosphono)-1-cyclohexanone (1a)

To a mixture of diethyl phosphite (1.46 mL, 11.4 mmol) and N_cO -bis(trimethylsilyl)acetamide (3.06 mL, 12.4 mmol) in 5 mL of dichloromethane, was added trimethylsilyl triflate (0.1 mL, 0.52 mmol) at 0 °C. After 30 min, 2-cyclohexen-1-one (1.0 mL, 10.3 mmol) was added and the mixture was stirred for 1 h at 0 °C. The enolsilane intermediate was hydrolyzed by stirring the reaction mixture with 3 mL of 1N HCl for 3 h. The organic layer was separated, dried over MgSO₄, and concentrated. The crude product was purified by chromatography on silica gel to give 95% yield of 1a.

REFERENCES AND NOTES

- (a) Hilderbrand, R. L. The Role of Phosphonates in Living Systems, CRC Press, Boca Raton, 1983.
 (b) Engel, R. Synthesis of Carbon-Phosphorous Bonds, CRC Press, Boca Raton, 1988.
- (a) Mori, I.; Iwasaki, G.; Kimura, Y.; Matsunaga, S.; Ogawa, A.; Nakano, T.; Buser, Schär, H.-P.; Hatano, M.; Tada, S.; Hayakawa, K. J. Am. Chem. Soc. 1995, 117, 4411-4412. (b) Mori, I.; Iwasaki, G.; Hayakawa, K. Yuki Gosei Kagaku Kyokaishi, 1996, 56, 514-524.
- (a) Sekine, M.; Yamamoto, Y.; Hashizume, A.; Hata, T. Chemistry Lett. 1977, 485-488. (b) Evans, D.
 A.; Hurst, K. M.; Truesdale, L. K.; Takacs. J. M. Tetrahedron Lett. 1977, 18, 2495-2498. (c) Hata, T.;
 Hashizume, A.; Nakajima, M.; Sekine, M. Tetrahedron Lett. 1978, 19, 363-366. (d) Evans, D. A.; Hurst,
 K. M.; Takacs. J. M. J. Am. Chem. Soc. 1978, 100, 3467-3477. (e) Thottathil, J. K. in Handbook of
 Organophosphorous Chemistry, Ed. Engel, R.; Maracel Dekker: New York, 1992; pp. 74-75.
- 4. Liotta, D.; Sunay, U.; Ginsberg, S. J. Org. Chem. 1982, 47, 2229-2231.
- In situ silylation of phosphinic acids with N, O-bis(trimethylsilyl)acetamide: Thottathil, J. K.; Ryono, D. E.; Pyzybyla, C. A.; Moniot, J. L.; Neubeck, R. Tetrahedron Lett. 1984, 25, 4741-4744.
- 6. Interestingly, it was found that 1,4-adduct 3a can be selectively formed by addition of triethyl phosphite to enone 2a in the presence of a stoichiometric amount of TMSOTf.

For the use of a stoichiometric amount of TMSOTf in the addition of triphenylphosphine to enones, see; (a) Kozikowski, A. P.; Jung, S. H. J. Org. Chem. 1986, 51, 3400-3402. (b) Kozikowski, A. P.; Jung, S. H. Tetrahedron Lett. 1986, 27, 3227-3230.

(Received in Japan 12 March 1997; revised 9 April 1997; accepted 10 April 1997)